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Abstract Godel was a realist about mathematics, an idealist about time,
and developed an ontological proof. Is there an epistemological principle
that renders this puzzling collection of views coherent? We argue: yes,
the principle of stability. This principle says that, given a model of a
phenomenon, we are only justified in inferring that the phenomenon
has that property if the model has this property stably, i.e., all relevantly
similar models have it, too. For appropriate choices of models and
similarity notions, we show that this principle precisely entails Godel’s
views and thus renders them coherent. As an upshot, we assess Godel’s
views by discussing these choices, and we explore alternatives. We end
with three promising directions for how this investigation of stability can
be done using formal methods.

1 Introduction

The 2025 Kurt Godel Award essay question is:

How are Godel’s conceptual and mathematical realism, his argu-
ment against the existence of time, and his ontological argument
compatible with a coherent ontology?

This question alludes to the following puzzling combination of three views
that Godel held concerning ontology—i.e., the question of which objects exist.

First, Godel believed that concepts and mathematical objects exist indepen-
dently of us, which he famously expressed in the following passage:

Classes and concepts may, however, also be conceived as real
objects, namely classes as “pluralities of things,” or as structures
consisting of a plurality of things and concepts as the properties
and relations of things existing independently of our definitions
and constructions. (Godel 1944/1990, p. 128)*

All references to Godel’s work (including page numbers) are to the Collected Works. In the
indicated date (e.g., 1944/1990), the first year (1944) refers to the date of the work, and the
second year (1990) refers to the date of the respective volume of the Collected Works.



Second, Godel argued that time, as we think of it, does not objectively exist.
His argument is based on his construction of a universe, that is possible
according to the theory of relativity, with the peculiar feature that

in whatever way one may assume time to be lapsing, there will
always exist possible observers to whose experienced lapse of time
no objective lapse corresponds. (Godel 1949/1990a, p. 205)

Third, Godel provided an ontological argument, i.e., a proof of the existence of
God. As noted by Adams (1995, p. 388), Godel showed this proof, at the end
of his life, to Dana Scott and also told Oskar Morgenstern that he was satisfied
with the proof but did not publish it, as Morgenstern notes in his diary,

[to not be misunderstood] that he actually believes in God, whereas
he is only engaged in a logical investigation (that is, in showing
that such a proof with classical assumptions [completeness, etc.],
correspondingly axiomatized, is possible). (Quoted from Adams
1995, p. 388)

So Godel was a realist about mathematical objects, concepts and—at least,
conditional on the axioms—God, but he was an idealist about time. This
collection of views is puzzling in the sense that many arguably would rather
be realists about time but, say, skeptical about the Platonic existence of math-
ematical objects. The question hence is to explain why Godel’s views are
coherent.

To start, we make the question more precise via two conceptual distinctions.
First, we understand the question systematically and not historically. We do
not consider—at least not very closely—how Godel’s thought developed over
time leading to these three views. Rather, we ask which general principles
might render these views coherent. Second, we do not understand the ques-
tion metaphysically asking whether Godel’s three views are true. Rather, we
understand the question epistemically asking whether the views are coherent.
These two senses can come apart: We can have a collection of beliefs that are
coherent—i.e., they are logically consistent, can explain the evidence we have,
and adhere to scientific methodology principles like Occam’s razor, etc.—but
yet they are false (e.g., early modern aether theories in physics). Conversely,
we can have a collection of beliefs which happen to be true, but they are not
coherent (e.g., prophetically believing in a statement despite evidence to the
contrary).

Hence we understand the essay question as follows: Is there an epistemo-
logical principle that renders Godel’s three views coherent? Our answer will
be: Yes, the principle of stability. To explain, let us first state the principle and
then sketch how it applies to Godel’s views—before doing this in detail in the
remainder of the paper.

The principle of stability goes back to Pierre Duhem and concerns the scien-
tific practice of studying a phenomenon by a class of mathematical models that



represent this phenomenon. (See Fletcher (2020) for an excellent exposition
of this principle.) Typically, the models are models of a theory about the phe-
nomenon. For example, if the phenomenon is our universe (at a large scale),
then the models are spacetimes, i.e., certain four-dimensional manifolds which
are the models of the theory of relativity. But when can we infer from a given
model having a property that also the phenomenon has this property? The
principle of stability says that we can only make this inference if the model has
this property stably, i.e., all sufficiently similar models also have this property.
We will see that this principle is related to the axiomatic method and, as such,
is also congenial to Godel’s rationalism.

Now, here is the idea how this applies to Godel’s views. Each view con-
cerns one phenomenon: namely, (a) mathematics, (b) time, and (c) theism.
Each phenomenon is studied via the models of the best available theory for
the respective phenomenon: namely, (a) ZFC, i.e., Zermelo—Fraenkel set the-
ory with the axiom of choice, (b) Einstein’s general theory of relativity, and
(c) Godel’s axiomatization of God as an entity that has all positive properties.
Concerning (a), absoluteness results in ZFC ensure that all models agree on,
e.g., the natural numbers and many other mathematical objects. So the prop-
erty that the natural numbers exist is stable, and hence can be inferred—or so
the argument goes—to also hold of the phenomenon, just like Godel’s view
claims. Concerning (b), in the spacetime that Godel constructed, time is not as
we think it is, so—or so the argument goes—the existence of an objective lapse
of time is not stable, hence we cannot infer it to hold of the phenomenon, like
Godel claims. Concerning (c), Godel’s proof shows that God, i.e., an entity
that has all positive properties, exists, and hence this holds in all models of
Godel’s theory. So the property that God exists is stable, and hence can be
inferred—or so the argument goes—to also hold of the phenomenon.

Thus, the principle of stability renders Godel’s three views coherent. In this
paper, we develop and discuss this answer to the essay question. The structure
is as follows. In Section 2, we describe the just mentioned model-based
conception of science and the principle of stability. In Section 3, we go through
Godel’s three views and show how it is justified by the principle of stability.
In Section 4, we discuss three ways to change a scientific modeling context:
by adding more principles to the theory, by considering other properties to
be inferred about the phenomenon, and by changing the underlying notion
of similarity. In Section 5, we sketch three avenues for an investigation of
stability with formal methods. We conclude in section 6.

2 Scientific Modeling Contexts and the Principle of Stability

In this section, we describe the model-based conception of science and state
the principle of stability. We also compare it with the axiomatic method and
Godel’s rationalism.



For the purpose of this paper, we assume the following caricature con-
ception of science.? Each scientific endeavor aims to understand some phe-
nomenon. Typically, this endeavor is made more precise by asking whether
the phenomenon has a certain property that the scientists are interested in. An
example already mentioned is general relativity: Here, the phenomenon is our
universe at large, and one property of interest is whether the universe has a
‘global time’, i.e., a lapse of time that all observers agree on. (We discuss this
in detail in Section 3.1.) To answer this question, scientists develop a theory
and corresponding models of this phenomenon. The theory can express the
property and describes the laws that govern the phenomenon. The models
of the theory represent the possible ways the phenomenon could be, given
these laws.> Hence, the models are epistemically possible worlds: the ways the
phenomenon could be given what we know about it. One of those worlds
represents the actual phenomenon, but we do not know which. Gathering
new evidence will make some worlds more likely than others, but all of them
are possibilities. In the general relativity example, the theory is Einstein’s
general theory of relativity, and the models are spacetimes, i.e., certain four-
dimensional manifolds.

The principle of stability concerns when we can infer that the phenomenon
has the property from a model having the property. It says that this is only
possible if the model has the property stably, i.e., all relevantly similar models
have the property, too. Hence, to state the principle, we also need a notion of
similarity between models.

To give a name to this bundle of ideas, let us say that a scientific modeling
context consists of a phenomenon, a property of the phenomenon, a theory
of the phenomenon, a class of models of the theory, and a notion of simi-
larity between the models.* In such a context, we can state the principle of
stability (Fletcher 2020).

Principle of stability (necessity) The inference from a model having property
¢ to the phenomenon having property ¢ is justified only if the model
has property ¢ stably, i.e., all relevantly similar models also have .

To illustrate, say our scientists have some convincing evidence that a par-
ticular spacetime M accurately represents the actual universe. They mathe-
matically prove that M has the property ¢ of having a global time. Are they
justified to conclude that the universe has this property ¢? Well, the evidence

By ‘caricature’ we want to stress that we do not want to say that all science is like this or
should be like this, but that this conception rather is a useful and idealized picture of science
that covers many instances.

3We do not further distinguish the phenomenon type and the tokens of it. For some phenom-
ena (e.g., our universe), there is just one token in the actual world, but other phenomena
are multiply realized in the actual world (e.g., population dynamics).

4The word ‘context’ is to reflect the ‘methodological contextualism’ suggested by Fletcher
(2016).



they gathered is subject to measurement errors and other imprecision, so it
does not single out M uniquely. Models similar to M are also consistent with
that evidence, and if one of them violates ¢, we cannot consistently with the
evidence conclude ¢ about the universe. In other words, only if M and all
similar models have property ¢, are we justified to conclude ¢ about the
universe.

As stated, the principle only restricts inferences: it requires stability as a
necessary condition for justified inference (‘only if’). However, in practice, we
are also interested in sufficient conditions, i.e., how much stability is needed
to justify an inference (‘if’ rather than ‘only if”). One such sufficient amount of
stability is maximal stability:

Principle of stability (sufficiency) If all models have property ¢ (‘maximal
stability’), then the inference from a (or any) model having property ¢
to the phenomenon having property @ is justified.’

We take the “principle of stability” to include both the necessity and the
sufficiency versions. In the remainder of this section, we add five clarifying
comments.

(1) Static vs dynamic contexts. For now, we work statically in a fixed scientific
modeling context. The scientists are in the business of understanding the
space of models, gathering evidence which models are more likely to be actual,
evaluating the stability of the property of interest, etc. Later, in Section 4, we
will also dynamically consider changing context. For example, the scientist
might have gathered overwhelming evidence to add a new law to the theory
(and thus declare models that do not satisfy it as not epistemically possible
after all). Or maybe the scientists discard the theory completely in favor of a
new one, etc. Maybe the scientists are also led to consider a related property
which, however, is not yet expressible in the theory, so it also requires a
revision of the theory.

(2) Realism. This conception of a model-based science comes naturally
with realism, i.e., the assumption that there is some reality that generates the
phenomenon. In the general relativity example, this would be the assumption
that the phenomenon, i.e., our observations of the stars, originates from a
real world that exists independently of us and that contains these stars. Here,
however, we remain neutral on this: We do not make any metaphysical
assumption about the origins of the phenomena. We are only concerned with
the epistemic question which inferences about the phenomenon are justified
by the theory and its models, and we are not concerned with the metaphysical
question whether these inferences are true.

SFletcher (2020, p. 13) discusses this as part of a principle dubbed ‘Justification” which is
argued to imply, together with two other principle, the above principle of stability: “If
several models represent the phenomena equally well, then only those properties which all
those models have are licensed [to have justification to infer of phenomena]”.



(3) Justification of the principle. The principle has been suggested with the
natural sciences in mind, although, as Fletcher (2020, p. 2) notes, it “appears to
be of unusually wide scope, applying in principle to inferences from properties
of models in any science when one can describe those models with sufficient
precision”. The justification for the principle is a ‘contingent transcendental
argument’: If we engage in the scientific modeling of a phenomenon as de-
scribed above (and it is a contingent matter whether we do), then we must
accept this principle (hence it is transcendental, i.e., constitutive of the activity
of scientific modeling). See Fletcher (2020, sec. 5) for an extended argument,
with a reference to Chang (2008) discussing the idea of a contingent transcen-
dental argument. Also see the literature on robustness analysis in science for
related ideas: Levins (1966), Weisberg (2006), Woodward (2006), and Schup-
bach (2018)—see Fletcher (2020, App. A) for a comparison with the principle
of stability.

(4) Axiomatic method. The principle of stability is reminiscent of the axiomatic
method. The latter also postulates basic principles about the phenomenon,
and insights into the phenomenon are gained by deducing theorems from
these axioms. This method, of course, has been extremely influential not
just in mathematics (Hintikka 2009), but also in economics (Thomson 2001)
and the physical and social sciences (Suppes 1983). Just as the axiomatic
method justifies consequences of the axioms, the sufficiency version of the
principle of stability also justifies inferring those properties that all models
of the theory have, i.e., those properties that logically follow from the theory.
And if similarity is trivial, i.e., every model is similar to any model, then the
necessity version of the principle of stability says that a property that does
not follow from the axioms, i.e., is not stable (since false in some model of the
theory), also cannot justifiably be inferred about the phenomenon. However,
what the principle of stability adds over the axiomatic method, is a more
fine-grained analysis of the space of models of a theory, by taking similarities
into account and not just logical consequence.

(5) Godel’s rationalism. The axiomatic method is also congenial to Godel’s
rationalism, who was optimistic about finding, via conceptual analysis, basic
axioms from which not just mathematical but also philosophical questions can
be decided. For a discussion of this, see Kennedy (2020, sec. 3) and van Atten
and Kennedy (2003).

3 The Coherence of Gédel’s Views: Stability of Concepts

In this section, we argue that the principle of stability renders Godel’s three
views coherent. In general, these arguments take the following form, starting
from a given phenomenon and a property that we would like to infer about
the phenomenon.

(P1) Identify the scientific modeling context, i.e., (a) the theory of the phe-



nomenon and the corresponding class of models, and (b) the notion of
model-similarity.
(P2) Prove a mathematical result about the non-stability (resp., maximal
stability) of the property ¢ among the class of models.
(C) Conclude with the stability principle that ¢ cannot (resp., can) be justifi-
ably inferred about the phenomenon.

In the next three subsections, we do this for Godel’s three views. For the
phenomenon of time (Section 3.1), we provide a scientific modeling context in
which the principle of stability entails that there is no justification for inferring
the property that an objective time exists. For the phenomenon of mathematics
(Section 3.2), we provide a scientific modeling context in which the principle of
stability entails that there is justification for inferring the property that various
mathematical objects exist. For the phenomenon of theism (Section 3.3), we
provide a scientific modeling context in which the principle of stability entails
that there is justification for inferring the property that God exists. In each
case, we also critically discuss the suitability of the chosen scientific modeling
context.

3.1 Idealism about Time

Godel (1949/1990a) criticized our conception of time according to which
any two events are objectively (and not just observer-relatively) ordered as
either simultaneous or one before the other. Godel described this view thus:
“reality consists of an infinity of layers of ‘now” which come into existence
successively” (Godel 1949/1990a, 202f.). His argument involved two steps.
First, Godel (1949/1990b, 1952/1990) proved that there is a spacetime—i.e., a
model of the theory of general relativity—that cannot have a global time: there
is no way of ordering the events of the spacetime into layers of now. This (type
of) spacetime is now known as the Godel universe. Second, Godel (1949/1990a)
claimed that this possibility renders our conception of time philosophically
unsatisfactory:

It might, however, be asked: Of what use is it if such conditions
prevail in certain possible worlds? Does that mean anything for
the question interesting us whether in our world there exists an
objective lapse of time? I think it does. ... For, if someone asserts
that this absolute time is lapsing, he accepts as a consequence that
whether or not an objective lapse of time exists (i.e., whether or
not a time in the ordinary sense of the word exists) depends on the
particular way in which matter and its motion are arranged in the
world. This is not a straightforward contradiction; nevertheless,
a philosophical view leading to such consequences can hardly be
considered as satisfactory. (Godel 1949 /1990a, 206f.)



In this subsection, we interpret Godel’s argument as an argument from the
principle of stability. Then we discuss its plausibility: after all, while the first
step has been celebrated as an important insight into the theory of general
relativity, the second, modal step has been heavily criticized (e.g. Earman 1995,
pp- 194-200).

So we need to spell out premise (P1) and premise (P2) of argument pattern,
where the phenomenon and property under discussion are our universe at
large and whether it has a global time.

Regarding premise (P1), part (a) is clear: Our best available physical theory
about the universe at large is the theory of general relativity. Its models,
called spacetimes, are pairs (M, g), where M is a connected four-dimensional
Hausdorff C* manifold and g is a Lorentz metric such that (M, g) is an exact
solution of Einstein’s field equations (Hawking and Ellis 1973, p. 56 and p. 117).
We do not need the formal definition in the remainder, so we just elaborate
on the intuition: The manifold M contains the points—known as events—of
spacetime (with three spatial dimensions and one temporal dimension), g
describes the geometry, the field equations interlink the geometry and the
matter, and exactness requires a ‘reasonable” distribution of matter.

Having specified the theory and its class of models, only part (b) remains:
the notion of model-similarity. As the preceding quote shows, Godel took the
spacetime that he constructed to be relevant when considering the property
of having a global time also in the actual spacetime. This suggests the trivial
notion of similarity: any spacetime is relevantly similar to the given one when
considering the property of having a global time. This is what we choose for
now as our interpretation of Godel’s argument. But later, when we discuss the
plausibility of the argument, we also consider other notions of similarity.

Regarding premise (P2), Godel’s universe proves the non-stability of the
property of having a global time: Whatever the actual spacetime, under
the chosen trivial similarity, there always is a relevantly similar spacetime—
namely, Godel’s universe—that does not have a global time.®

Now, the principle of stability implies (C): we cannot justifiably infer about
the actual universe that it has a global time. This is how we interpret Godel’s
conclusion: that the view that “time in the ordinary sense of the word exists”
is unsatisfactory, i.e., not justified.

Thus, in short, our interpretation of Godel’s argument is this. Premise (P1)
states the implicit background assumptions of Godel’s argument. Premise (P2)
is the first step of Godel’s argument: the existence of the Godel universe. The
principle of stability is the second, modal step of Godel’s argument. And (C)
is Godel’s conclusion against the existence of time.

The upshot of this interpretation of Godel’s argument is that its plausibility

®Formally, a spacetime (M has a global (or cosmic) time if there is a function t : M — R such
that, for all events p, q € M, if p causally precedes q (so some signal can be send from p to
q), then f(p) < f(q).



now hinges on the plausibility of the choice of model-similarity. In particular,
it prompts us to ask why we should consider trivial similarity and not another,
more careful notion. Here are some intuitive examples of such alternative
notions from the literature. A spacetime (M’, g’) is similar to a given spacetime
(M, g)if...

1. Observational similarity: the parameters determining (M’, g’) are within
the error margin of measuring these parameters in (M, g).”

2. Uncertainty similarity: the difference in the parameters determining
(M’,g’) and (M, g) are beyond what is detectable according to the un-
certainty principle.®

3. Civilizational similarity: an arbitrarily advanced civilization of (M, g)
could locally manipulate matter and energy to obtain (M’, g’).?

4. Indistinguishability similarity: if we were to live in (M’, g’), we would
experience time as we do in (M, g).!°

These notions of similarity have some intuitive motivation, so the question
is, if we adopt them, instead of trivial similarity, would the argument from
the principle of stability still go through? To answer this, we would need
to make the intuitive notion of similarity mathematically precise, in order to
prove the non-stability as a mathematical fact. We will take up the question of
formalization in Section 4.3 using topology, and for discussions of the informal
notions we restrict ourselves to some pointers to the literature.

Regarding observational similarity, there is some discussion of whether
the Godel universe is consistent with the measurement of the actual uni-
verse. In the standardly considered cosmological models, the Friedmann-
Lemaitre-Robertson-Walker spacetimes, there is a global time (e.g. Smeenk
and Wiithrich 2011, sec. 4). However, one may regard Godel (1952/1990) as
making his argument more convincing by constructing universes that have no
global time and are observationally more plausible. Indeed, Hawking (1990,
189f.) writes that “[t]hese models could well be a reasonable description of
the universe that we observe, although observations of the isotropy of the
microwave background indicate that the rate of rotation must be very low”.
For further discussion, see Su and Chu (2009). Quantum similarity is difficult

"This is arguably the most straightforward idea. To provide but one reference, see Hawking
(1971, p. 395).

8This is suggested by Hawking and Ellis (1973, p. 197): “General Relativity is presumably the
classical limit of some, as yet unknown, quantum theory of space-time and in such a theory
the Uncertainty Principle would prevent the metric from having an exact value at every
point. Thus in order to be physically significant, a property of space-time ought to have
some form of stability”.

°See, e.g., Hawking (1992) or Smeenk and Wiithrich (2011).

9See, e.g., Savitt (1994), Yourgrau (1999, p. 47), Godel (1949/1990a, p. 206), or Smeenk and

Wiithrich (2011). Another way to formulate this is: our cognition of time tracks the physical
time. (This is reminiscent of the characterization of knowledge of Nozick (1981) according
to which, roughly, a belief is knowledge if it tracks the truth.)



to assess given the open problem of merging the theories of quantum me-
chanics and general relativity. Regarding civilizational similarity, whether a
spacetime without a global time can be rendered actual depends, arguably, on
the much-discussed cosmic censorship and chronology protection conjecture.
For indistinguishability similarity, the argument would be that, for any local
region of spacetime (say, a human lifetime), the experience cannot distinguish
between a Godelian rotating universe and a non-rotating universe with a
global time, if the rotation is very low. For discussion, see, e.g., Savitt (1994),
Belot (2005), Dorato (2002), and Smeenk and Wiithrich (2011).

3.2 Realism About (Parts of) Mathematics

Next, we move to mathematics, a domain for which the principle of stability
was arguably not directly envisaged. But given the similarity to the axiomatic
method and given the “unusually wide scope, applying [whenever] one can
describe those models with sufficient precision” (both noted in Section 2),
we explore the application nonetheless. We ask: can the principle of stabil-
ity be invoked to convey justification to Godel’s view that, at least certain,
mathematical objects exist?

Before we start, though, recall that our goal is not to argue that Godel’s
Platonistic beliefs are true. In other words, we do not aim to produce another
argument in the philosophy of mathematics for Platonism (e.g., a classic such
argument is the Quine-Putnam indispensability argument). Instead, the ques-
tion we are concerned with here is how the principle of stability can convey
some justification for Godel’s position—regardless of whether this justification
ultimately holds up scrutiny or whether Platonism is true. So we need to
provide a scientific modeling context (P1) and show the maximal stability
of the existence of mathematical objects (P2). Then the principle of stability
renders Godel’s views coherent, as we aim to show qua answer to the essay
question. Once this is in place, future work can discuss, e.g., whether Godel
would have put forward this justification himself or whether the justification
holds up scrutiny and can be taken as an argument for Platonism.!!

Regarding premise (P1), what is an appropriate scientific modeling context
for mathematics? Despite the somewhat odd phrasing, this question has a
clear answer. The axiomatic foundations—and hence the theory—of all of
mathematics is ZFC, i.e., Zermelo—Fraenkel set theory with the axiom of choice.
The models of this theory are those in the sense of model theory, i.e., structures
(M, E). Here M is a set (namely the set of objects the model considers to be
sets) and E is a binary relation on M (where xEy means that x is an element
of y) such that, for all axioms 1V € ZFC, the model (M, E) satisfies {, written
(M, E) = 1. This settles part (a) of (P1); and regarding part (b), we choose the
trivial notion of similarity, where every model is similar to every other model,

UFor discussion of Godel’s platonism, see, e.g., Hintikka (1998) and van Atten (2001).
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because we want to establish maximal stability.

Regarding premise (P2), we need to show that the property of ‘x exists’, for
different mathematical objects x, is maximally stable across the models of ZFC.
For concreteness, let us do this for x being the set N of natural numbers.

We need to be a bit more precise about what we mean by this existence claim.
In a scientific modeling context, we consider a class X of models of a theory
T. These models are mathematical objects, so to define them and to prove
properties about them, we work in some mathematical background theory,
call it B. Usually, B is not even mentioned explicitly—for instance, we did
not specify it in Section 3.1—and just taken to be ZFC, i.e., all of mathematics.
(Often just a fragment of ZFC is enough, but we can be permissive here.)
Within this background theory B, we can consider the mathematical objects
that are models of the theory T. For instance, in Section 3.1, T was the theory
of general relativity, and the models were certain four-dimensional manifolds.
Now, however, T is ZFC and the models are model-theoretic structures (M, E).
Isn’t this circular? No, in our background theory B = ZFC, we can do all of
mathematics including differential geometry (studying manifolds) and model
theory. The only added subtlety is that we need to distinguish between what
we, in our background theory, consider to be a set, and what the structure
(M, E) considers to be a set. To be more precise, in set theory, one writes V
for the collection (the ‘class’) of all objects of our background theory. The
structure (M, E) is one such object, so (M, E) is in V. Moreover, (M, E) is built
out of objects of our background theory, so each element of the set M also is
an element of V, so M C V. However, not every set in V needs to be a set in
M,ie,V Z M.12

Now, we can make precise the existence claim. In our mathematical back-
ground theory B, we acknowledge, as anywhere in mathematics, the set N of
natural numbers. So the question whether the object x = N exists in all models
of ZFC becomes the question whether the set N is in M for all models (M, E) of
ZFC. That this is the case is precisely the content of absoluteness theorems in set
theory.!® To state them, we need to more ideas. First, set theorists are typically
only interested in models (M, E) that, like V above, also have the property
that, if x € M, also x C M (i.e., the elementhood relation E is transitive). These
are known as transitive models of ZFC. Second, we can uniquely define the
natural numbers by the property @n(x) saying that x is the smallest set that
contains 0 (which we identify with the empty set) and is closed under the
successor operation (which we define as S(y) := y U {y}).!* In other words,
our background theory ZFC proves that there is a unique object x with the
property @n(x), and we denote this object by N. Now, if (M, E) is a model

12Since M is a set, it has a powerset, which is in V, but cannot be in M.

13See, e.g., Kunen (1980, ch. IV) or Jech (2003, ch. 12).

YFormally, we define @y (x) as saying that x is a limit ordinal, x is not 0, and every member of
x is a natural number (i.e., an ordinal that, if not 0, is not a limit ordinal, and every element
of it also has this property). See the proof of Jech (2003, lem. 12.10).

11



of ZFC, it also has a unique object xpm such that (M, E) F ¢@n(xm). But the
question is this: is this object xp in M also what we consider to be the natural
numbers, i.e., xp = N? If (M, E) is transitive, this is what the absoluteness
theorem tells us: For ally € M, we have

(M, V) F on(y) & only), 1)

s0, setting y := xpm, we get that the unique object xp1 in M that satisfies @n(y)
in M is also the unique object in V that satisfies @n(y), hence xps = N.

Thus, all models of ZFC agree that the set of natural numbers, as we as
modelers think of it, really exists. So the principle of stability justifies inferring
this existence about the phenomenon. Hence this is in contrast to Section 3.1,
where the notion of time, as we as modelers think of it (namely, as objec-
tive layers of ‘now’), did not exist in all models, so the principle of stability
precluded a justified inference to the phenomenon. Again, we do not claim
that Godel made—or would have made—such an argument, however Godel
defined the notion of absoluteness in his work on the axiom of choice and the
continuum hypothesis (Godel 1940/1990, p. 76).'°

In this way, the principle of stability justifies the existence of one mathemat-
ical object, albeit an important one, namely the set of natural numbers. But
of course, Godel’s view included the existence of all mathematical objects. So
can we push this argument further? The absoluteness theorems also apply
to many other notions: like being a pair, being a function, being an ordinal,
being a Cartesian product, etc. So we can similar justify other mathematical
objects and concepts. However, there are also bounds to this: absoluteness can
fail. So the principle of stability only justifies the existence of some but not all
mathematical objects.

To understand failures of absoluteness, note that the absoluteness argument
involved two steps. First, there is a formula that uniquely defines the object
of interest (pn(x) above), and second we show that the interpretation of
this formula is ‘the same’ in the different models (equation 1 above). So the
argument can fail because either (1) there is no uniquely defining formula
for the object or (2) there is such a formula, but it changes its meaning across
models.

An example of (2) is provided by Cohen’s famous proof of the independence
of the continuum hypothesis (completing the work started by Godel). One can
define the real numbers—also known as the continuum—as 2%, but what that
object is in different models varies: in some models it has the cardinality Xy (so
the continuum hypothesis is true there) and in others it has the cardinality N,
or yet other cardinalities (so the continuum hypothesis is false there). Hence
the continuum is not an absolute object and its existence cannot be justified
with the principle of stability.

15See Solovay (1990) for discussion.
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An example of (1) is V, and Godel was very excited about that. In a talk,
Gerald Sacks recounts a dinner with Godel, Morgenstern and others once at
the Institute for Advanced Study in Princeton:!®

[Godel] brought up ... one of his favorite concepts, the Absolute,
with a capital ‘A’. That’s not a concept that 20th century philoso-
phers tend to bring up: the Absolute. So what was it to him? In my
mind, it was the class of all sets, but maybe it was something more
for him, I'm not sure. But he seemed to be talking about the class
of all sets, hence of all mathematical objects; that’s worthy of being
called the Absolute. ... He says: “You know, language does not
enable us to define the Absolute’. If you have a formula, F(x), it
can never happen that that formula has exactly one x that satisfies
it, that x being the Absolute, that can’t happen. Because we know
from the reflection principle in set theory, if I have a formula F(x),
and F(V) holds where V is the class of all sets, then F must also
hold for some set. In other words, anything you say about the
class of all sets which is true, is also true for some particular set.
And hence you can’t define the Absolute. ... Then his eyes lit
up, he said: ‘Isn’t that wonderful? We know something important
about the Absolute, just by logic, just by reason’. And he was full
of enthusiasm.

In sum, when applied to mathematics, the principle of stability essentially
amounts to the axiomatic method and justifies the existence of objects that are
absolute in ZFC. We will take up the question of whether this can be extended
to more objects in Section 4.1.

3.3 Ontological Argument

Finally, we move to the third view: Godel’s ontological argument. As men-
tioned in the Introduction, the ontological proof of Godel (1970/1995) was
never published, but Godel worked on it at least since 1941 and told Dana
Scott in 1970 about it. Scott presented a version of the proof in his seminar,
so it became fairly well-known. For a history and broader context of Godel’s
proof, see, e.g., Adams (1995), Benzmdiller and Scott (2025), and Sobel (2004).
Here, we want to interpret Godel’s ontological argument in terms of the
principle of stability. So we again need to spell out premises (P1) and (P2).
Regarding premise (P1), part (a) now of course cannot rely on an established
theory of theistic phenomena. Instead, Godel postulates such a theory with
the axioms of the proof. It defines an object to be God iff it has all positive
properties; and it provides axioms on the notion of a positive property. These

16For a recording of the talk, see https://www.youtube.com/watch?v=PR7TMTqtF14Y, starting
at minute 25:39 (last checked on 22 June 2025).
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axioms include, for example, that any property either is positive or its negation
is positive (and not both); or that if a property is positive, it necessarily is
positive. These axioms are formulated in a higher-order modal logic, so the
models of Godel’s theory are the models of higher-order modal logic satisfying
the axioms of the theory. (For details, see Benzmdiller and Woltzenlogel Paleo
(2014).) For part (b), we again choose the trivial notion of similarity, because
we want to establish maximal stability.

Regarding premise (P2), this now is Goedel’s proof: that the axioms logically
imply the necessary existence of God, i.e., an object that has all positive
properties. Hence the existence of God holds in all models of the theory and
thus is maximally stable. Scott’s version of Godel’s proof was formally verified
using Automated Theorem Provers by Benzmidiller and Woltzenlogel Paleo
(2014). For a recent discussion and many further references, see Benzmiiller
and Scott (2025).

Hence, in this scientific modeling context, the principle of stability justifies
inferring the existence of God—again with close affinities to the axiomatic
method. Our goal is to show how the principle of stability renders Godel’s
ontology coherent. For a further discussion of Godel’s argument itself, we
refer to Sobel (2004).

4 Dynamics: Changing the Scientific Modeling Context

So far, we have applied the principle of stability in a fixed scientific modeling
context. Moving from this static setting to a dynamic setting, we now want to
consider what happens when this context changes. We consider three possible
such changes: we change the theory by adding further principles (Section 4.1),
we change to a different property under discussion (Section 4.2), or we change
the notion of similarity (Section 4.3).

4.1 Changing Theory: Toward New Axioms of Set Theory

We saw in Section 3.2 that the principle of stability only justified the existence
of some but not all mathematical objects. It justified all those objects that are
absolute. However, because of the independence of the continuum hypothesis,
objects related to the continuum are notoriously not absolute. Thus, a natural
question—at least from a Platonist’s view—is whether the theory, i.e., ZFC, can
be plausibly extended to settle the continuum hypothesis and to, hopefully,
thus also justify more objects. Indeed, Godel was programmatic in initiating a
search for new axioms in set theory:

one may on good reason suspect that the role of the continuum
problem in set theory will be this, that it will finally lead to the
discovery of new axioms which will make it possible to disprove
Cantor’s conjecture. (Godel 1947/1990, p. 196)
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To this day, this continues to inspire work in set theory, including the recent
celebrated result of Asper6 and Schindler (2021), who also cite the above pas-
sage. They unify two prominent but conceptually different axiom candidates
that both settle the continuum hypothesis in the negative: namely, confirming
the belief of Godel, which he held at least for parts of his life (Moore 1990,
sec. 7), that the continuum in fact has size N».

This arguably is the most famous instance of Godel discussing the search
for new axioms. But we may also ask this for the other applications of the
principle of stability that we have discussed. For example, Kahle (2023) argues
this to be the take-away from Godel’s argument about time: that we have to
look for new physical principles that exclude the Godel universe.

4.2 Changing Property: Modal Arguments in General Relativity

In this subsection, we consider examples in general relativity of changing the
property under discussion. We consider examples that leave the rest of the
scientific modeling context unchanged. In other words, we do not consider
examples for which we need to make the theory more expressive.!”

One example of such a different property is that the universe is physically
deterministic, i.e., any future or past physical state of the universe is deter-
mined by some (e.g., the current) state together with the physical laws. One
way to make this property of the universe precise is to demand that our uni-
verse has a Cauchy surface: a surface of spacetime such that any given initial
conditions on this surface determine the future and past. Having a Cauchy
surface is equivalent to being globally hyperbolic, which implies being stably
causal, which, in turn, is equivalent to having a global time. Thus, Godel’s
argument also applies to the property of being physically deterministic: in
the context of general relativity, it is not stable with respect to the trivial simi-
larity, so we are not justified to infer it about the universe. Discussions of the
plausibility of the original argument hence apply similarly to discussion of
the plausibility of the present argument. What we want to stress, though, is
that thus Godel’s argument generalizes—via the principle of stability—to a
modal argument pattern in general relativity.

Indeed, we now argue that we can regard another extensive debate in the
philosophy of general relativity theory as an instance of this modal argument
pattern. This debate concerns the validity of the Church-Turing thesis when
moving from our everyday notion of space and time to spacetime as described
by general relativity.

This started when, based on an idea of Pitowsky (1990), Hogarth (1992)
showed that there are spacetimes with the following startling property. There
are two idealized observers, Alice and Bob, who travel through spacetime

17We would need to make the theory more expressive, for instance, to formalize the indistin-
guishability notion of similiarity, since it involves a subject’s time experience in a spacetime.
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heading off in two different directions. Bob’s journey is indefinitely long: his
clock will keep running forever. However, after some finite time on Alice’s
clock, all of Bob’s infinitely long journey is in the accessible past of Alice. So
for Alice “forever is a day” (Earman and Norton 1993). This event on Alice’s
worldline is called a Malament-Hogarth event (MH-event) and spacetimes where
this is possible are called Malament-Hogarth spacetimes (MH-spacetimes).

The interest in MH-spacetimes comes from the fact that they seem to allow
for hypercomputation: for example, Alice and Bob can conspire to ‘compute’
the non-Turing computable problem of whether or not the axioms of set theory,
ZFC, are consistent. Bob goes through every ZFC-proof and checks if it is a
proof of the inconsistent sentence L. If he finds a proof, he sends a light
signal to Alice which she will have received at the MH-event. So if Alice
receives a signal, she knows, after some finite time (on her clock), that ZFC is
inconsistent, and if she does not receive a message by then, she knows that
ZFC is consistent. In fact, Welch (2008) answered the question of how much
more exactly can be computed in MH-spacetimes. By appropriately ‘stacking’
observers like Alice and Bob, it is shown that all hyperarithmetical predicates
can be computed in some MH-spacetime.'®

MH-spacetimes generated much discussion: are they “physically reasonable’
or are they merely possible according to general relativity but violate quantum
mechanical or other physical laws? See, e.g., Etesi and Németi (2002), Németi
and David (2006), Manchak (2010), Andréka et al. (2018), or Bournez and
Pouly (2021, sec. 6.2.9). Here, as mentioned, we note that this debate can be
seen as an instance of the modal argument pattern. The phenomenon still is
the universe, but the property under discussion is now the impossibility of
hypercomputation or, equivalently, the correctness of the physical Church-
Turing thesis (Andréka et al. 2018). The scientific modeling context is still that
of general relativity. But the upshot is that the debate can now be framed as
being about the choice of similarity notion and the corresponding stability
or instability of the property.!” The question is: Are there principled notions
of similarity that render the impossibility of hypercomputation stable and
hence justified? Or do natural notions of similarity include MH-spacetime that
render the physical Church-Turing Thesis unstable and hence unjustified? We
now turn to formalizing such questions of stability.

4.3 Changing Similarity: Topologies on the Space of Models

If X is a class of models, a natural way to formalize a notion of (graded)
similarity—and thus stability—is via topology. This is described in detail by

181n the rotating black hole MH-spacetimes considered by Etesi and Németi (2002), this reduces
to (a subclass of) AJ-predicates.

YThere is a potential connection with the above discussion of physical determinism, since
Etesi (2002, 2013) have argued that the Church-Turing thesis is intimately related to the
cosmic censorship hypothesis (which is closely connected to determinism).
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Fletcher (2020, sec. 4) and Fletcher (2018b).2° The idea goes as follows.

Given a model x in X, we represent a degree of similarity to x by the set U
of models that are similar to x to that degree. Let us write Ny for the collection
of x’s similarity degrees. The following assumptions then are natural:

e Forall U € Ny, we have x € U (i.e., x is always similar to itself).

e For all U,U" € Ny, there is V € Ny such that V C U N U’ (ie., being
similar to x both to degree U and to degree U’ is implied by some degree
of similarity to x).

e ForallU € Ny and y € U, thereis V € Ny such that V C U (i.e., if y is
similar to x, then objects sufficiently similar to y are also similar to x).

This determines a topology on X in the usual sense, i.e., a collection T of subsets
of X that is closed under finite intersection and arbitrary union (Engelking
1989, ch. 1).2! Conversely, if T is a topology on X, we can define, for x € X, the
collection Ny :={U € 1: x € U} of neighborhoods of x.

In sum, a notion of similarity on the class of models M is described by a
topology T on X. The members of T—known as open sets—describe degrees of
similarity: if two models x and y are in an open set U, this means that they are
similar to degree U; the smaller U, the closer the similarity.

Within this topological framework, we can explicate further concepts. First,
we can identify properties of models with subsets P of X: model x having
property P means x € P. We can then also explicate the idea that model x has
property P stably, i.e., all relevantly similar models y also have the property:

there is U € T such that x € U and, for ally € U, we havey € P.

We call a property P C X stable if any model x € X that has P has it stably. It
is not difficult to show that, thus, the stable properties are precisely the open
subsets.??

Second, we can also formalize the argument from the principle of stability:
Given a phenomenon and a property P of it, first identify (1)(a) the theory of
the phenomenon and its class of models and (1)(b) specify a topology on the
class of models. Next (2) prove one of the following:

(i) Stability: the property P is generic, i.e., open and dense in the topology.*
This is the topological analogue of the probabilistic idea that the property

YFletcher and Lackey (2022) provides a broader historical context on the use of topological
ideas in philosophy.

Z'Namely, T contains those subsets U of X that are unions of subfamilies of | J, .y Nx (Engelking
1989, prop. 1.2.3).

2Gince the collection of all open sets forms a Heyting algebra, the logic of stable properties
hence is intuitionistic logic. See Vickers (1989) for a more general verificationalist (or, dually,
falsificationist) interpretation of topology.

A subset P of a topological space (X, T) is dense if, for every x € X and for every open set
U € twithx € U, we have PN U # 0.
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holds for ‘almost all’ models.?* Thus, this generalizes the sufficient
condition of the principle of stability.

(ii) Non-stability: the property P is not stable (or, stronger, no model has P
stably, i.e., =P is dense). Thus, this formalizes a violation of the necessary
condition of the principle of stability.

Then conclude with the principle of stability that P can (if (i) holds) or cannot
(if (ii) holds) be justifiably inferred about the phenomenon.

Now, since notions of similarity correspond to topologies on X, the question
about ‘the right’ notion of similarity turns into the question of ‘the right’
topology on X. Let us discuss this question for the specific example of general
relativity. The 1970s saw extensive research into what is the best topology on
the class of spacetimes.”> Two topologies have been suggested as the main
contenders: the open topology and the compact-open topology. We do not need
the formal definitions here, but the high-level idea is this. The compact-open
topology considers two metrics g and g’ on a manifold M to be similar if they
have similar values on a compact region of spacetime (the bigger the region,
the more they are similar), while the open topology requires this agreement in
all of spacetime.?®

What does this mean for Godel’s argument for the ideality of time, in the
above formalized version? On the one hand, in the open topology, the theorem
of Hawking (1969)—that having a global time is equivalent to stable causality—
implies that having a global time is a stable property. Hence, it is generic that
either a spacetime contains closed timelike curves (i.e., blatant violations of
a global time) or it has a global time (Hawking 1971, p. 397). Hence we can
justifiably infer this disjunction for our universe, and Godel’s argument for
the ideality of time does not succeed. On the other hand, in the compact-open
topology, failing to have a global time is dense (Fletcher 2016, prop. 4, p. 376).
Hence we cannot justifiably infer that the universe has a global time, and
Godel’s argument does succeed.

However, Geroch (1970, 1971) criticizes both the open and the compact-
open topologies as not quite adequate for capturing our intuitions of similarity.
Fletcher (2018a) analyzes this criticism into an impossibility result and also pro-
vides, for slightly weaker demands, a possibility result. This introduces a new
topology, called the global topology, in which the counterpart of Hawking's
theorem still holds.

%See Oxtoby (1980) for analogies and disanalogies between topological and measure-
theoretic/probabilistic notions.

BSee, e.g., Geroch (1970), Geroch (1971), Hawking (1971), and Lerner (1973). For a great
discussion, see Fletcher (2016) and Fletcher (2018a).

%See, e.g., Hawking (1971, fig. 1 and 2) for illustration and Fletcher (2018a, sec. II) for formal
definition.
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5 Mathematical Formalization of Stability: Further Directions

In the preceding Section 4.3, we already saw one particularly fruitful formal-
ization of stability: namely, via topology. In this section, we sketch three
further avenues for an investigation of stability using formal methods.

(1) Modal logic. In addition to topology, modal logic offers another suggestive
formalization of stability by interpreting the box operator [J as stability.” Thus,
if X is a class of models and x € Xis a particular model, then X, x F ¢ means
that model x has property ¢, and X, x F ¢ means that model x has property
@ stably, i.e., all relevantly similar models also have property ¢. To give an
example of this, we can consider the class of models of ZFC and a model x is
‘relevantly similar’ to a model y if y is a forcing extension of x. Hamkins and
Lowe (2008) prove that, once made fully precise, the resulting modal logic—
i.e., the modal logic of forcing—is S4.2. Moreover, many further instances of
the modal logic interpretation of stability are discussed in [reference redacted],
and Fitch’s lemma is used to derive an impossibility result: that several prima
facie plausible principles about stability cannot be jointly satisfied.

(2) Persistent homology. Section 4.3 formalized the question of which notion
of similarity to choose into the question of which topology to choose on the
class X of models of some phenomenon. If there is no canonical choice, we
can regard this question as a (meta-) instance of the principle of stability:
Each relevant topology T on X is now one model of the (meta-) phenomenon
‘similarity’. We then are concerned with the property

P(T) := property ¢ is stable in topology T,

where @ is the property under discussion in the original phenomenon. If 1
is itself stable, i.e., holds for a wide range of different topologies T, we are
justified to infer it for the intended notion of similarity, but if it is not stable,
we are not justified. This question of which topological features persist when
varying the topology is studied in persistent homology—a central method
in topological data analysis. (For an overview, see Edelsbrunner and Harer
(2008), Otter et al. (2017), and Weinberger (2011).) In particular, one considers
the features that are tracked by homology groups (e.g., the number of compo-
nents or holes). If such a feature persists for a wide range of topologies, it is
considered significant, and otherwise it is regarded as noise.?8

(3) Stone duality. Another mathematical field that is well poised to better
understand the space of models of a theory is Stone duality. It describes a

Y There are well-known connections between modal logic and topology: on the topological
semantics for modal logic, the clause for “x having property P stably” from Section 4.3 is
precisely the clause for x = [OP. See van Benthem and Bezhanishvili (2007) for details.

XTechnically, one assumes that the considered topological spaces form a nested sequence
indexed by the real numbers, and a feature persists for a long time if it persists for a large
interval of indices.
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precise duality between the ‘syntactic world” of theories on the one hand and
the ‘semantic world” of spaces of models on the other hand. In other words,
every theory uniquely determines a topology on the space of its models, and
every space of models uniquely determines its theory. Let us illustrate this
idea in the propositional case. (For generalizations to first-order logic, see
Makkai (1987) and Awodey and Forssell (2013).) Given a theory T, we regard
it as a Boolean algebra: namely, the set of all sentences modulo being provably
equivalent under T. A model of T is then an ultrafilter of this Boolean algebra,
i.e., a maximally T-consistent set of sentences. Now we can put a natural
topology on the set X of all models of T as follows. Each sentence ¢ determines
a natural similarity degree: given a model x, consider a model y similar to
x to that degree if y agrees with x on the truth-value of ¢. This generates
a topology on X, which turns it into a so-called Stone space.?’ Conversely,
every collection of models with a topology that renders it a Stone space also
determines a Boolean algebra: namely the Boolean algebra of closed-and-open
sets (which, intuitively, are the ‘basic” similarity degrees just described). For
references on Stone duality, see Johnstone (1982) and Gehrke and van Gool
(2024); for the conceptual development, also see Abramsky (1991), Fletcher
and Lackey (2022), and Lawvere (1969); and for applications of this ballpark
of ideas to the debate on ‘models vs theory’, see Hudetz (2017, 2019).

6 Conclusion

We conclude with a brief summary. We started with the essay question of
whether there is an epistemological principle that renders coherent Godel’s
three views on mathematics, time, and theism. Our answer was: the principle
of stability. For each view, we provided a scientific modeling context in
which the principle of stability entails the view held by Godel. Specifically,
for mathematics, absoluteness results in ZFC entail the stable existence of
certain mathematical objects; for time, Godel’s universe shows the non-stable
existence of global time; and for theism, Godel’s ontological proof shows the
stable existence of an entity that has all positive properties. We then looked at
the dynamics of context change. Changing the theory is suggested by Godel’s
programmatic search for new axioms of set theory, which might justify more
objects; changing to other properties revealed a modal argument pattern in
general relativity; and changing the notion of similarity showed that Godel’s
argument idealism about time can be formally interpreted as being sensitive to
the choice of topology on the class of spacetimes. Finally, we identified three
promising directions for further investigations of the stability using formal
methods.

»Hence, properties expressible in the language of the theory are automatically stable. However,
subsets P C X that are not open (e.g., closed and not open) represent properties that are not
stable.
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