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Abstract

Since ancient times, philosophers and physicists have studied the close

connection between the phenomena of physical causation and time. This

paper now shifts the focus into an epistemological setting and analyses the

connection between logical causation and time, thus underlining an anal-

ogy between physical causality on the one hand side and logical inference

on the other. The question, how much time is needed for an inference, is

addressed from three di�erent angles: in connection with Kripke models

for intuitionistic propositional logic, in the light of algorithmical dynam-

ics, and �nally in parallel to the phenomenon of biological evolution, now

considering an evolution of knowledge. The emerging overall picture is

somewhat di�use, and certainly, it cannot �nally answer the question,

how much time is actually needed by a logical inference. However, the

formal investigations seem to hint at some fundamental inconsistencies in

our intuitive concept of time, a result which appears to be in full accor-

dance with Gödel's proof for the non-existence of time.

1 Introduction

The Kurt Gödel Award 2021, presented by the Kurt Gödel Circle of Friends
Berlin, focuses on the question what it �mean[s] for our world view if, according
to Gödel, we also assume the non-existence of time.� In a physical world, the
concept of time�or as one should maybe say more carefully: the psychological
illusion of time�has always been closely connected to the concept of causation.
And while Gödel himself regarded causation and time as two fundamental con-
cepts in philosophy and metaphysics (see Figure 1),1 the close interwovenness
between the two has already been stressed since ancient times, when Aristotle,
both in his Physics and Metaphysics2 addressed causality in his account on the
�Four Causes.�3 And whereas all four causes can be regarded as an explanation

1Kurt Gödel Papers, Box 11b, Folder 15, item accession 060168, on deposit with the
Manuscripts Division, Department of Rare Books and Special Collections, Princeton Uni-
versity Library. Used with permission of the Institute for Advanced Study. Unpublished
Copyright Institute for Advanced Study. All rights reserved. Transcriptions and translations
by the author.

2Physics II 3 and Metaphysics V 2
3For detailed information about Aristotle's Four Causes, see Falcon (2019).
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and an answer to the central question why things are as they are, it is Aristotle's
third cause, the e�cient cause, which, in a straightforward manner, underlines
the temporal element of the concept of causality.

Figure 1: An undated list, written by Gödel, of fundamental philosophical
concepts including cause and time. Note that cause is immediately preceeded
by the concept reason. Additionally, matter and form remind of Aristotle's �rst
and second cause.

In this paper, we now transfer the focus, which is usually seen in the con-
nection between physical causation and time, into an epistemological setting,
concentrating on the connection between logical inferences and the phenomenon
of time. These logical inferences, which will be represented by formal rules, play
a central role in the evolution of our knowledge, and as the term `evolution' sug-
gests, they should be closely connected to the concept of time, or at least�as
mentioned before�to a psychological illusion of something we would call `time.'
Concerning the evolution of mathematical knowledge, Gödel writes in his note-
book MaxPhil IX (p. 45):4

Bem. (Phil): Wenn man die Objekte der Mathematik als durch
den Geist konstruiert ansieht, bringt man notwendig ein zeitliches
Element herein. Sie existieren erst nach der Konstruktion [...].

[Remark (philosophy): If one regards the objects of mathematics
as constructed by the mind, one necessarily brings in a temporal
element. They exist only after the construction [...].]

If one agrees that a mental construction of mathematical knowledge is always
based on logical inferences, then there appears to exist a striking analogy be-
tween Aristotle's e�ective physical cause on the one hand side and an episte-
mological cause or `reason' on the other side. The aim of this paper now is
an analysis of the link between logical reasoning and the concept of time, thus
supporting a remark in Gödel's notebook MaxPhil IV,5 which clearly identi-
�es �Zeit� (time) as one of the fundamental psychological (as well as physical)
concepts. Gödel writes (p. 251):

4Kurt Gödel Papers, Box 6b, Folder 69, item accession 030095. The book was written
between November 1942 and March 1943.

5Kurt Gödel Papers, Box 6b, Folder 67, item accession 030090. This book was written
between May 1941 and April 1942.
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Fra. (Phil.): 1. Gibt es auch eine �reine� Psychologie, welche a priori
ist und in welche die inneren Wahrnehmungen eingeordnet werden,
ebenso wie eine reine Physik (Raum-Zeit-Lehre)?

[Question (philosophy): 1. Is there also a �pure� psychology, which
is a priori and into which the inner perceptions are embedded, as
well as a pure physics (space-time theory)?]

And as a footnote he adds:

Begri�e: Zeit, actus, Erinnerung, Wahrnehmung

[Concepts: time, actus, memory, perception]

As far as the title of this paper is concerned, we will certainly not be able
to give a de�nite answer to the question how much time a logical inference
takes. However, we will use the opportunity to shed light upon this question
from at least three distinct angles, regarding this investigation as a collection of
evidence, sometimes in favour of, sometimes against the just quoted �necessary
temporal element.� We postpone an answer to the question, what the non-
existence of time would mean to our worldview, to our conclusion at the end of
this paper.

In the course of this paper, we proceed as follows. In Section 2 we lay the
basis for our discussion by �xing a set of rules of inference. In a system of
Natural Deduction, these rules de�ne an intuitionistic propositional logic, and
we argue why this kind of logic is appropriate for our investigation. Section
3 analyses what are known as Kripke models, which, from the very beginning,
have always been closely associated to the phenomenon of time. Section 4 then
focuses on the close connection between rules of inference on the one hand side
and algorithms and their inherent dynamics on the other, established by the
Curry-Howard-correspondence. Finally, we sketch an analogy, mentioned by
Gödel in unpublished notes, between biological evolution and the epistemical
evolution of knowledge.

2 Rules of Inference

In this section, we introduce the rules of inference which form the basis for
our discussion in the sections to come. These rules, presented in Figure 2,
constitute a proof system called intuitionistic natural deduction (NJ), in which
trees represent formal proofs of a judgement Γ Ø ϕ, which always is the root of its
proof tree. The leaves of the tree are axioms (Ax), while the inner nodes follow
the construction scheme de�ned by the given rules. Note that the actual logical
inference is always read from the top to the bottom of a rule, thus interpreting
the rules in a forward direction. Each judgement Γ Ø ϕ (read �Γ proves ϕ�)
consists of a set Γ of propositional formulas, which can be interpreted as a logical
environment, and a single formula ϕ, which holds in this very environment. A
formula ϕ is provable in our logical system if Ø ϕ is the root of a proof tree.6

For more details on intuitionistic natural deduction and examples of proof trees,
see e.g. Sørensen & Urzyczyn (2006).

6In this case, the environment (i.e. the left hand side of the judgement) is taken to be the
empty set.
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(Ax)
Γ, ϕ Ø ϕ

Γ, ϕ Ø ψ
(� I)

Γ Ø ϕ� ψ

Γ Ø ϕ� ψ Γ Ø ϕ
(� E)

Γ Ø ψ

Γ Ø ϕ Γ Ø ψ
(, I)

Γ Ø ϕ , ψ

Γ Ø ϕ , ψ
(, E)

Γ Ø ϕ

Γ Ø ϕ , ψ
(, E)

Γ Ø ψ

Γ Ø ϕ
(- I)

Γ Ø ϕ - ψ

Γ Ø ψ
(- I)

Γ Ø ϕ - ψ

Γ Ø ϕ - ψ Γ, ϕ Ø τ Γ, ψ Ø τ
(- E)

Γ Ø τ

Γ ØÙ
(Ù E)

Γ Ø ϕ

Figure 2: The rules of inference for the intuitionistic natural deduction calculus
NJ.

Before we start our discussion about the central question how much time
is needed for a single logical inference, it should be worth to explain why we
concentrate on an intuitionistic setting, thus neglecting a rule of double negation
elimination and closely related rules and axioms like the law of the excluded
middle.

First, the considered phenomena naturally call for an intuitionistic setting,
either because the structures in question naturally constitute models for an
intuitionistic logic (Section 3), or because we interpret logical formulas as simple
types of certain algorithms represented by terms of combinatory logic. These
types always correspond to theorems of an intuitionistic logic (Sections 4 and
5).

Secondly, it is Gödel himself who leads us into an intuitionistic direction as
soon as propositions are regarded as a piece of knowledge. In his notebook Max-
Phil V (p. 292) he writes about L. E. J. Brouwer's intuitionistic interpretation
of mathematics:7

Bem. (Gr.): In der Brouwerschen Interpret. der Mathematik wer-
den gar nicht die mathematischen Sätze P interpretiert, sondern die
Sätze �ich weiÿ P � (oder in einer schwächeren Form: P ist beweis-

7Kurt Gödel Papers, Box 6b, Folder 67, item accession 030091. The book was started in
May 1942.
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bar).

[Remark (foundations): In Brouwer's interpretation of mathemat-
ics, not the mathematical propositions P are interpreted, but the
propositions �I know P � (or in a weaker form: P is provable).]

Therefore, following Brouwer, the application of a rule of inference represents an
evolution of knowledge.8 Taking rule (� E), i.e. modus ponens, as an example,
the knowledge of both ϕ and the implication ϕ � ψ in the same logical envi-
ronment inevitably leads to the knowledge of ψ within this environment. We
will see in the following section that, apparently, this is by no means a matter
of course.

Gödel's psychological view upon intuitionismus is also expressed in a remark
to be found in his notebook MaxPhil III (p. 149), where he states:9

Bem.: Nächstes Ziel für Lekt. & Arb. Unmath. sollte sein: die
Grundbegri�e der Psychol. in Ordnung bringen (derart, dass man
alle beschreibt und zumindest die �möglichen� Gesetze sieht, analog
zu den kinematischen und Kraftbegri�en in der Physik). Rechtfer-
tigung dafür:

1.) Anwendungen für Grundlagen (Int. ist eine schematisierte Psych.)

2.) Günstige Wirkung auf die Klarheit meines Denkens, die Ar-
beitseinteilung, Sprachbeherrschung, Arbeits-Max. ganz
im Allgemeinen

3.) Das ist wahrscheinlich eine Voraussetzung und ein Weg zur
Metaphysik und zu einer �Weltanschauung� zu kommen. Und
zwar solltest du es systematisch tun.

[Remark: The next goal for reading and working non-math. should
be: to put the basic concepts of psychology in order (such that one
describes all of them and sees at least the �possible� laws, analogous
to the kinematic and force notions in physics.) Justi�cation:

1.) Applications for foundations (intuitionism is a schematized psy-
chology).

2.) Positive e�ect on the clarity of my thinking, organization of
work, mastery of language, working maximes in general.

3.) This is probably a prerequisite and a way to come to meta-
physics and to a �worldview.� And you should do it systemati-
cally.]

8Gödel's claim, that intuitionistic logic is closely connected to the notion of knowledge,
is also strongly supported by the Gödel-McKinsey-Tarski translation (Gödel, 1933), which
translates intuitionistic propositions into a (classical) modal logic S4, in which the usual
provability operator may now be interpreted as a knowledge operator. Details about the
modal language of knowledge can be found, for example, in van Benthem (2010, Chapter 12).

9Kurt Gödel Papers, Box 6b, Folder 66, item accession 030089.
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3 Time and the Kripke Model

As a basis for the discussion to follow, we �rst brie�y de�ne the notion of a
Kripke model, which�in the case of intuitionistic logic�was �rst introduced in
Kripke (1965).

A Kripke model is a triple �W,B,è�, where W is a non-empty set of possible
worlds, B is a partial order on W , and è (read �forces�) is a relation between W
and the set of propositional variables, which, as a starting point, assigns atomic
propositions to possible worlds, and for worlds w,w� and propositions p satis�es
the monotonicity condition

If w B w� and w è p then w�
è p. (1)

From the very beginning, Kripke regarded the relation B as an `earlier-than'-
relation. In Kripke (1965, p. 98), he writes under the heading �Intutive inter-
pretation�:

We intend the nodes H to represent points in time (or �evidential
situations�), at which we may have various pieces of information.10

And Mints (2000, p. 47) writes in his introduction to Kripke models:

The semantics for intuitionistic logic described in the following [i.e.
Kripke models] re�ects a more dynamic approach: Our current knowl-
edge about the truth of statements can improve. Some statements
whose truth status was previously indeterminate can be established
as true. The value true corresponds to �rmly established truth that
is preserved with the advancement of knowledge, and the value false
corresponds to �not yet true�.

Note how the idea of a ��rmly established truth� corresponds to monotonicity
as given in (1). An example of a Kripke model is depicted in Figure 3.

Figure 3: An example Kripke model. (The model is the one given in Kripke
(1965), the timeline being added.)

10Here, H denotes some possible world. The �pieces of information� are represented by the
propositional variables.
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Finally, the forcing-relation è is extended to include absurdity Ù and com-
pound logical statements which have been constructed using the usual connec-
tives ,,- and �, denoting conjunction, disjunction, and implication, respec-
tively.

w èÙ never holds, (2)

w è �ϕ , ψ� i� w è ϕ and w è ψ, (3)

w è �ϕ - ψ� i� w è ϕ or w è ψ, (4)

w è �ϕ� ψ� i� from w�
è ϕ follows w�

è ψ for all w� with w B w�. (5)

If negation  is understood as an abbreviation, i.e.  ϕ � �ϕ �Ù�, then we can
also add

w è  ϕ i� w�
è ϕ does not hold for any w� with w B w�. (6)

For the model in Figure 3, we have, for example, H2 è �p, q� and G è �r � p�.
The reader should also note that neither G è q nor G è  q are valid in this
model.

We now turn to the question, how much time a rule of inference takes in a
Kripke model. And considering conjunction and disjunction �rst, it turns out
that no time is taken at all. As the stipulations (3) and (4) are restricted to a
single world or�as we should say�to a single moment in time, the knowledge
of the pieces of information p and q, for example, immediately leads to the
knowledge of p , q. Thus, the rules (, I) and (- I) seem to loose the necessity
to be read in a forward direction: The knowledge of p, q, and p, q exists at the
same time, and it thus certainly becomes more di�cult to regard p and q as the
reasons or the premisses for the information p , q.

The situation becomes more complex if implication is considered in (5) and
in the special case of (6). An interpretation of both rule (� I) and rule (� E)
(modus ponens) becomes much more complicated, of the former because the
logical environment would have to include present and future situations, of the
latter because the information ψ is no longer caused or preceded by ϕ and ϕ� ψ;
rather, both ϕ and ψ now appear to be preconditions for the implication ϕ� ψ,
thus turning the rule `upside down.' Time seems to collapse.11

Gödel clearly appears to have anticipated these problems. In unpublished
(undated) notes12 concerning his 1951 Gibbs lecture (Gödel, 1951), he writes:

wissen = mit Recht in jedem beliebigen Grad davon überzeugt sein
(insbesondere also mit Recht beschlieÿen, es unter keinen Umständen
zu revidieren)

Theorem: Ich weiÿ p. a Ich bin in unmittelbarem Kontakt mit den
Gegenständen der Aussage p.

[to know = to be rightly convinced of it to any degree (in particular,
to decide rightly not to revise it under any circumstances).

11These problems seem to be supported by the fact that, in �ukasiewicz's many-valued logic,
the epistemological compatibility of conjunction and implication, expressed by the inequality
p, �p� q� B q, is not valid. On the other hand, we have p, q B p� q. For details, see Lethen
(2021).

12Kurt Gödel Papers, Box 12, Folder 43, item accession 060573.

7



Theorem: I know p. a I am in direct contact with the objects of the
statement p.]

And although his `de�nition' of the term �knowledge� (wissen) is in perfect
accordance with the monotonicity of the Kripke model, the �direct contact�
(unmittelbarer Kontakt) appears to be highly problematic, as�in the case of
implicational statements and negations�the future is concerned as well as the
present moment. Apparently, Gödel was well aware of this fact. Addressing
negation, he adds a footnote to his `de�nition' of knowledge, which reads:

Weil sie Erkenntnis möglich machen, also sicherlich ihre Negation
niemals anzunehmen wäre, denn das hieÿe erkennen wollen und
gleichzeitig seine Möglichkeit zu negieren. (Für Wissen in diesem
Sinne gilt das Th. nicht.) Aber woher weiÿ ich diese Implic.? (Zu
kompliziert für eine direkte Schau. Auÿerdem gar nicht evident,
denn ein Umlernen vielleicht möglich, und der Satz betri�t eine sehr
allgemeine Aussage über unseren Erkenntnis-Appar., der gar nicht
mit einem Blick zu übersehen [ist].)

[Because they make knowledge possible, so certainly their negation
would never be accepted, because that means to want to know and at
the same time to negate its possibility. (For knowledge in this sense
the theorem does not hold.) But how do I know this implication?
(Too complicated for a direct observation. Moreover, not evident at
all, because a relearning may be possible, and the theorem concerns a
very general statement about our cognitive apparatus, which cannot
be overlooked by a glance).]

As an aside, it should be interesting to note that, if these remarks have
indeed been written in 1951 when the Gibbs lecture was given, Gödel would
have anticipated the central elements of Kripke's models�possible worlds and
the fundamental monotonicity property�by more than a decade, even if he does
not explicitly mention the close connection to intuitionistic logic in his notes.13

Finally, we have a brief look at the possible �relearning� (Umlernen) men-
tioned in Gödel's notes. How is it possible to gain new information in the course
of time? Kripke himself writes (Kripke, 1965, p. 98):14

Now given a point in time G, there are various possibilities open for
gaining further information about the propositions. [...] At point
G (representing our present information) we have proved P . For all
we know, we may remain �stuck� at G for an arbitrarily long time,
without gaining any new information. But it is possible that we will
gain enough information to �jump� to point H1 (in which case we
have a proof of R in addition to P ), or to the point H2 (where we
get a proof of Q in addition to P ), or even to the points H3 or H4.

It is interesting to note that here a �jump� in time seems to rely on �proofs� of
new pieces of information, and clearly these proofs cannot be based on proper

13The concept of branching time had been known to Gödel at least since 1935, see Lethen
(2021b).

14The reader may want to compare this quote to Figure 3.
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rules of inference. Rather, �gaining further information about the propositions�
seems to refer to the psychological feeling of evidence : As soon as a certain level
of evidence has been reached, as soon as a certain threshold has been crossed, the
piece of information is taken for granted within the present model. Alternatively,
the new information might be a contingent fact, a revealed dogma, or a `new'
plausible axiom which, up to that point of time, had not been included in the
theory, but is now added for �aestetical reasons� or �reasons of completeness.�
Gödel himself, addressing the notion of evidence, writes in his notebook MaxPhil
III (p. 54):

Bem.: Alles, was irgendwie eingesehen werden kann, ist entweder15

1. vollkommen klar (das, was man wissen kann),
2. einigermaÿen klar (Ersetzungssaxiom),
3. plausibel, d.h. annehmbar aus aesthetischen, Vollständigkeits-

gründen, etc.

[Remark: Everything that can be understood somehow is either

1. perfectly clear (that what can be known),
2. reasonably clear (axiom of replacement),
3. plausible, i.e. acceptable due to aesthetical reasons or reasons

of completeness.]

4 Time and Algorithmic Dynamics

Algorithms have always played a central role in mathematics, and they have
always been regarded as dynamic processes in which clearly de�ned distinct
steps have to be carried out one after the other. This dynamic view also has
been preserved when the �rst formal concepts appeared, notably in Alan M.
Turings introduction of the Turing machine in 1936, where Turing speaks of a
�process� carried out in distinct �moments� (Turing, 1936�7, p. 231). Also, these
dynamics reappear in other formal algorithmic concepts like Alonzo Church's
lambda calculus, and in combinatory logic, which was introduced independently
in Schön�nkel (1924) and Curry (1930), and which we will take as a basis for
our considerations in this section.

The language of untyped combinatory logic (CL)16 can be de�ned by the
following simple production rule, which introduces the two combinators S and
K as well as the notion of application, in which we call the left and right term
the subject and the object, respectively, of the application.

τ ��� S S K S �τ τ� (7)

Expample CL-terms are S, �SK�, and ��KK��KS��, of which the last one may
be simpli�ed to KK�KS�, following an association to the left.

Computation in CL is now re�ected by two axiom schemes of weak reduc-

15The �rst two items are marked as �analytisch� at the right margin.
16We restrict ourselves to a very brief introduction here. For details, see Hindley & Seldin

(2008) and Bimbó (2012).
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tion,17 which can be represented as

Sxyz U xz�yz� (8)

Kxy U x, (9)

where the meta-variables x, y, z stand for arbitrary CL-terms. We give an ex-
ample reduction, in which the very last term cannot be reduced any further and
thus constitutes a normal form.

K�SKSS�K U K�KS�SS��K U KSK U S

The reader should note that we could also have chosen a di�erent path of re-
ductions, which would nevertheless have led to the same result, a property of
CL known as the Church-Rosser-property.

K�SKSS�K U SKSS U KS�SS� U S

In typed combinatory logic, principal types can be assigned to terms. Two
axioms assign the principal types �a � �b � c�� � ��a � b� � �a � c�� and
a� �b� a� (or any other alphabetic variants) to the terms S and K, respectively.
If ϕ � ψ and ϑ are the principal types of terms σ and τ , one determines a
`minimal' variable-substitution sub which syntactically uni�es ϕ and ϑ. This
uni�cation then enables an application of the rule modus ponens, which �nally
leads to the conclusion sub�ψ�. These rules are summarised in Figure 4. An
example, which �nally assignes the principal type a � a to the term SKK is
shown in Figure 5.18

(Ax)
S � �a� �b� c�� � ��a� b�� �a� c��

(Ax)
K � a� �b� a�

σ � ϕ� ψ τ � ϑ
(pt)

�σ τ� � sub�ψ�

Figure 4: Assigning principal types to terms in CL. In rule (pt), sub is a
`minimal' substitution which syntactically uni�es ϕ and ϑ.

The reader up to now unfamiliar with typing systems will have noticed that
types are nothing but implicational propositions, and indeed, this close corre-
spondence between propositions and types is often referred to as the propositions-
as-types- or Curry-Howard-correspondence.19 Note that, within this framework,
the term may also be regarded as a proof for its principal type. Thus, the
example in Figure 5 also demonstrates that SKK is a proof for the proposition

17As we do not consider the notion of strong reduction in this paper, we will simply speak
of reduction.

18The reader should note that the term SKKx reduces to x for any CL-term x. It thus
represents an identity operator with principal type a� a.

19In the context of propositional logic, rule (pt) is often called rule D or condensed detach-

ment.
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S � �a� �b� c��� ��a� b�� �a� c�� K � p� �q � p�
(pt)

SK � �p� q�� �p� p� K � a� �b� a�
(pt)

SKK � a� a

Figure 5: A tree assigning the principal type a � a to the CL-term SKK,
using two applications of rule (pt). The substitution in the �rst step is
�a p, b q, c p�, in the second step �p a, q �b� a��.

a � a. Without going into further details, we mention that the rules in Figure
4 are indeed su�cient to prove the whole implicational fragment of intuitionis-
tic propositional logic (without the absurdity Ù). The details can be found in
Hindley (1997).

Before we move on, we mention as an aside, that Gödel, in his notebook
MaxPhil X,20 comments on the proposition a � �b � a�, which is the principal
type of the combinator K, and which is also known as the Positive Paradox,
as follows. Note the close correspondence to the monotonicity property of the
Kripke model, and to Gödel's de�nition of �wissen� (to know).

Bem. (Gr.): Der psych. Sinn von a a �b a a� ist:21 Das Festhalten
an einem einmal gefällten Urteil, wenn etwas Neues gefunden wird.
Es besteht irgendwie die psych. Tendenz, wenn man durch eine neue
Erkenntnis zur Umstoÿung einer alten veranlasst wird, das irgendwie
nicht als tatsächliches Zurücknehmen gelten zu lassen. (�So wurde
das nicht gemeint.�)

Remark (foundations): The psychological sense of a a �b a a� is:
Holding on to a judgment once made, when something new is found.
There is somehow the psychological tendency, when one is prompted
by a new �nding to overturn an old one, to somehow not let that
count as an actual withdrawal. (�That's not how it was meant.�)

We now return to our central question, how much time a rule of inference
takes, this time regarded in the light of algorithmic dynamics. Starting with
rule (pt), which is obviously closely related to rule (� E), modus ponens, one
can see that it actually takes place before the algorithm starts running: If we
regard an application of terms as nothing but a syntactical juxtaposition of
the subject and the object of the application, we are rather confronted with a
phenomenon which can be described as the stretching of a rubber band: Time
seems to stand still. Nevertheless, the stretching does trigger the actual run of
the corresponding algorithm.

In order to �nd out what kind of inference takes place while the algorithm is
actually running, we �rst have a look at the rule of substitution, which has not
explicitly been considered so far. This rule can be regarded as a way to specialise
already proved knowledge. And while the calculi given in Figures 2 and 4 do not
include the rule of substitution, it is an admissable rule in intuitionistic propo-

20Kurt Gödel Papers, Box 6b, Folder 70, item accession 030096. The book was written
between March 1943 and January 1944.

21Gödel adds the comment � = `wenn' � above the second a. (�wenn� means both �when�
and �if.�)
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sitional logic.22 The rule of substitution can simply be presented as follows, sub
being any substitution which replaces variables by arbitrary propositions:

ϕ

sub�ϕ�
for any variable substitution sub (10)

As an example, the substitution �a  �a� b�� would transform the proposition
a� a into the specialised proposition �a� b�� �a� b�.

As a single step of an algorithm is now represented by a single reduction
in combinatory logic, we consider the principal types of a CL-Term and of the
corresponding reduced term. Taking I as an abbreviation for the term SKK, the
example term SKSI reduces to KI�SI� in a �rst step, which, in a second step, can
be reduced to the term I. But while the original term SKSI has the principal
type �a � b� � �a � b�, the two following terms both have the principal type
a � a, of which �a � b� � �a � b� is a substitution instance. The situation
is depicted in Figure 6. As it turns out, the development of the types shown

CL-term (algorithm): SKSI U KI�SI� U I
Principle type (knowledge): �a� b�� �a� b� a� a a� a

Figure 6: The example algorithm SKSI reduces to KI�SI� and �nally to I. The
knowledge, represented by the corresponding types, seems to decrease over time.

in the example is not a coincidence, and it can be shown in general that for
CL-terms σ and τ with principal types ϕ and ψ, respectively, a reduction σ U τ
always implies that ϕ is a substitution instance of ψ. Thus, knowledge seems to
decrease over time while the algorithm is running: The rule of substitution (10)
is turned upside down, the e�ect appears before the cause, again time seems to
collapse.

As a closing remark for this section, we mention that the reason for the fact,
that a reduction in combinatory logic changes the corresponding principal types,
seems to be well hidden in rule (pt), which allows for a variable substitution in
both the subject and the object of an application, heavily relying on a procedure
known as (bidirectional) uni�cation, which was �rst considered in Robinson
(1965). Unpublished joint work with Anna Maiworm and Isabelle Sauer has
recently shown that a restriction to a unidirectional uni�cation, generally known
as pattern matching, does indeed preserve the principal type when a CL-term
is weakly reduced.23 This seems to indicate that the subject of an application
should not be given the power to alter the object in any way. We will brie�y
return to this phenomenon in the following section, where the object will be
interpreted as a �xed point of knowledge.

22Admissibility means that any proof of a proposition which uses this rule can be replaced
by a proof without it.

23For the di�erence between uni- and bidirectional uni�cation, see Knight (1989).
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5 Time and the Evolution of Knowledge

This section, in which we take a look at the intimate connection between bio-
logical evolution and the evolution of knowledge, has been inspired by a quote
which can be found in Gödel's �A�enz�-book on quantum mechanics.24 Here
Gödel writes in item 263:

Es ist tatsächlich bestechend, die zweckmäÿigen Umstellungen des
Individuums (Gedächtnis) aus demselben Prinzip zu erklären wie die
zweckmäÿigen Umwandlungen der Arten (Anpassung).

[It is indeed convincing to explain the purposeful transformations
of the individual (memory) in terms of the same principle as the
purposeful transformations of the species (adaptation).]

And in another place, he phrases the same analogy as follows:25

Es ist tatsächlich unbefriedigend, die zweckmäÿigen Reaktionen der
einzelnen Individuen (Lernen) durch ein vollkommen anderes Prinzip
zu erklären als die zweckmäÿigen Reaktionen der Arten (Anpas-
sung).

[It is indeed unsatisfactory to explain the purposeful reactions of
individuals (learning) by a completely di�erent principle than the
purposeful reactions of the species (adaptation).]

This very idea can already be found in Henri Bergson's writings, who puts the
emphasis on the close relation between nature's creation of new species on the
on hand side, and intellectual, i.e. human, creation and invention on the other
side. In Bergson (1904), he writes:

Si la vie est une création, nous devons nous la représenter par analo-
gie avec les créations qu'il nous est donné d'observer, c'est-à-dire
avec celles que nous accomplissons nous-mêmes.

[If life is a creation, we must imagine it by analogy with the creations
that we are given to observe, that is to say with those that we
ourselves accomplish.]

And Bergson even goes so far as to claim that the analogy is not a mere coin-
cidence (as cited in Hadamard, 1945, p. xii):

The inventive e�ort which is found in all domains of life by the
creation of new species has found in mankind alone the means of
continuing itself by individuals on whom has been bestowed, along
with intelligence, the faculty of initiative, independence and liberty.

In what follows, we will utilise Gregory Chaitin's metabiological model of
evolution as presented in Chaitin (2012). This model has often been criticised
as being far too simple and thus as not being able to display any interesting

24Kurt Gödel Papers, Box 6a, Folder 59, item accession 030082.
25Notebook Quantenmechanik II, Kurt Gödel Papers, Box 6b, Folder 78, item accession

030107.
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behaviour.26 Notwithstanding this critique, Chaitin's model will �rst enable us
to bring out the just mentioned �inventive e�ort� in a precise and rigour way,
and we will suggest combinatory logic�interpreted a as prototype programming
language�as a means to actually implement Chaitin's algorithm. Secondly, the
model will enable us to transfer the mechanism of the creation of new species into
an epistemological setting, thus�as Gödel puts it�explaining �the purposeful
transformations of the individual in terms of the same principle as the purposeful
transformations of the species.�

As it turns out, our formal approach leads to the insight that human cre-
ation does indeed simulate nature's�or, if the reader prefers�divine creation
in a very precise sense. If this simulation is taken for granted, the mental con-
struction of ideas should take a certain amount of time, just as the phenomenon
of time has always been inevitably connected to the process of Darwinian evo-
lution. And in fact, Gödel himself was concerned with the very question, how
much time biological evolution would take. In a notebook entitled �Physik
(1935),� he writes:27

Biologie: Mögliche Anwendungen der Mathematik:

a.) Wie viele Generationen seit Beginn des Lebens bis zum Men-
schen? Wie schnell muss die Entwicklung vor sich gegangen
sein? (Zufällige Schwankungen wie groÿ?)

b.) Anzahl der möglichen Molekülgruppierungen in einer Keimzelle
daraus berechnen. Wie groÿe Schwankungen der Eigenschaften
des Tiers ruft die kleinstmögliche Schwankung der Eigenschaften
der Zelle hervor?

[Biology: Possible applications of mathematics:

a.) How many generations from the beginning of life to human
beings? How fast must the development have progressed? (How
wide are the random variations?)

b.) From this, calculate the number of possible molecule groupings
in a germ cell. How much variation in the properties of the
animal does the smallest possible variation in the properties of
the cell cause?]

5.1 Chaitin's Model of Evolution

Evolution in Chaitin's model is an evolution of a single piece of software.28 In
order to run this software, we �rst �x a universal computer C, which always
takes a program and some data for this program as its input. Evolution then
starts with a randomly chosen program A, which, along with an empty set of
data ε, is run on the computer C. The output is then interpreted as a natural
number a, called the �tness of the program A. Next, we randomly choose a
mutation M , which is nothing but another program for the computer C. M is

26For a critique, see for example Siedli«ski (2017) and Ewert et al. (2013). This is certainly
not the place to give a comprehensive answer to this critique. Nevertheless, we rather prefer
to have the question, whether the model is �inspiring either for computer scientists [...] or for
biologists� (Siedli«ski, 2017, p. 143), be decided by the test of time.

27Kurt Gödel Papers, Box 6b, Folder 77, item accession 030105.
28Here Chaitin follows the general idea that DNA may be regarded as software.
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then applied to the program A, yielding a new program A�. Again, the �tness a�

of the program A� is computed, which is then compared to the current �tness a.
If a� is greater than a, the program A� is taken as our newly produced `organism,'
A being discarded. Otherwise A� itself is discarded: an implementation of the
survival of the �ttest. Afterwards, a new random mutation M is chosen and the
whole process starts again. The procedure is coded as Algorithm 1 below.

Algorithm 1 Chaitin's metabiological algorithm
1: A� random program
2: a� C�A, ε�
3: loop

4: M � random program
5: A�

� C�M,A�
6: a� � C�A�, ε�
7: if a� A a then
8: A� A�

9: a� a�

10: end if

11: end loop

Needless to mention, we are concealing some of the details in our all-too-brief
description of the process. What kind of `software' are we talking about, what
is the programming language? How do we interpret an output of the computer
C, sometimes as an integer, sometimes as a new program? How do we choose a
program `at random'? But before we address at least some of these questions,
we brie�y mention a truly fundamental drawback of Chaitin's algorithm, which
surfaces in lines 2, 5, and 6, or�in other words�whenever the computer C
is evaluating its input. Here, one does not know whether the computation is
going to halt or not: The computer underlies the famous halting problem. Thus,
Chaitin's model of evolution has to rely on an oracle which predicts whether
a program gets stuck in an endless loop. If so, a new random mutation (or
random organism) will have to be chosen. Again, the question, if we encounter
a divine element here, is left to the reader. In any case, the dynamics of the
underlying algorithm perfectly matches the dynamics of Darwinian evolution.
Without going into the details here, Chaitin's main result now states that the
overall �tness would grow much slower if an algorithm simply produced random
organisms (i.e. programs) until it �nds a �tter one. Thus, the secret of a fast
growing �tness seems to lie in the fact that the �ttest organism is not discarded
but `used' and `incorporated' in the next round of the algorithm.

Turning to the question of the programming language, it is worth mentioning
that the literature is largely silent about this decision. One of the exceptions,
if not the only one, is the paper Ewert et al. (2013), which uses the language
P

�� introduced and analysed in Böhm (1964) and Böhm & Jacopini (1966). The
programs of P �� are strings built of the four symbols R,λ, �, � only, following the
production rule

π ��� R S λ S ππ S �π� (11)

An examble P �� program might thus look like this:

RRλ�λR�Rλ��R
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Similar to Turing machines, P �� programs act on symbols on an in�nite tape,
which serves as the computer's memory.29

If the symbols R,λ, �, � are now used as the possible tape-symbols as well,
one can achieve that P �� programs can actually be applied to other P �� programs.
However, Ewert et al. (2013) have not been able to reproduce Chaitin's theoret-
ical results about a fast-growing �tness, thus concluding that �metabiology does
not demonstrate successful Darwinian evolution� and that �although elegant in
conception, metabiology departs from reality because it pays no attention to
resource limitations.� The authors, though, do not take into consideration a
major drawback of the use of the language P �� in a metabiological setting: If
the currently �ttest program is stored on the tape and the next random muta-
tion starts to act on this program, the mutation really destroys�in a very crude
manner�what has been reached so far, instead of incorporating and reusing the
information gained so far. Thus, the overall �tness cannot grow any faster than
in a naive algorithm which always starts from scratch.

Having identi�ed this fundamental problem with the P �� approach, we now
propose combinatory logic (CL) as a suitable programming language in Chaitin's
algorithm. While application of one program (a mutation) to another program
(the organism) is straightforward, we now de�ne the �tness of a program simply
as the number of applications appearing in its normal form.30 Again, we will
have to rely on an oracle in order to �nd out if a normal form exists. An
example run of Chaitin's algorithm in CL is shown in Figure 7. As the �tness
and thus the number of applications in the corresponding CL-terms grows very
fast indeed, only the number of iterations and the �tness itself are reproduced.

0: 3 23: 40 42: 187

1: 4 24: 41 43: 189

2: 7 25: 44 45: 190

3: 8 28: 48 46: 191

4: 10 30: 49 49: 193

7: 11 31: 51 50: 394

8: 13 32: 55 55: 398

10: 14 36: 58 56: 400

11: 32 37: 180 57: 804

22: 37 39: 185 58: 805

Figure 7: The �rst 30 steps of an example run of Chaitin's algorithm in CL.
Whenever a �tter organism (i.e. a longer CL-term) is found, the number of the
current generation and the �tness of the organism are printed.

As a comparison, Figure 8 shows the �rst nine steps of an algorithm which
produces random CL-term and simply keeps them until a �tter one is found.

29The instruction R moves a read/write head one position to the right. The instruction
λ moves it one position to the left, after altering the symbol on the tape in a cyclic way.
Parentheses indicate a loop which is executed as long as the current symbol on the tape is not
the �rst one in the list of possible tape symbols.

30A more elegant solution would consider the information content of an organismA, de�ned
as the length of the shortest CL-term which reduces to A. As this measure is not computable,
we stick to the more naive (but practical) solution.
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What is missing is an application of the newly produced term to a current
individuum.

1: 14 48: 23 74: 52

9: 19 59: 26 348: 58

10: 20 72: 42 899: 104

Figure 8: The �rst nine steps of an example run of an algorithm which simply
produces random CL-terms until a �tter one is found. Again, only the number
of the current generation and the �tness of the organism are printed.

The main advantages of using CL as the programming language in Chaitin's
algorithm can be summarised as follows:

� The currently �ttest organism is reused and incorporated by the newly
generated random mutation. While it might be cancelled by the mutation
in certain rare cases, it may as well be duplicated or itself applied to
parts of the mutation. The implementation thus supports the theoretical
results.

� The model can easily be extended to a population of several organisms,
which may even interact throught mutual `sexual application.'31

� Combinatory logic is a very well understood theory for which many dif-
ferent mathematical models exist, see Bimbó (2012) and the literature
mentioned therein.

� By using typed combinatory logic, one could even avoid the use of an
oracle, as typable CL-terms always have a normal form.

5.2 The Evolution of Knowledge

After this brief digression into the �eld of biological evolution, we will now turn
to the evolution of knowlegde. The close analogy will suggest that if time is
needed in order to create new species, a certain amount of time is also needed
for the creation of knowledge, which�in the case of purely mental creativity�
can be reduced to the phenomenon of having an idea. And whereas it is certainly
di�cult to give a precise de�nition of the term `idea,' at least three components
should be present in order to describe this very concept:

1. Randomness,
2. Truth,
3. Applicability.

Although we regard these components as necessary, we allow for a vague per-
ception of these terms at this stage, and they will merely serve as a guide when
constructing the formal system in question.

31The fact that Chaitin reduces his model to one single organism has frequently been criti-
sised, see for example Siedli«ski (2017). However, Bergson (1911, Chapter 1) already argues:
�Strictly speaking, there is nothing to prevent our imagining that the evolution of life might
have taken place in one single individual by means of a series of transformations spread over
thousands of ages. Or, instead of a single individual, any number might be supposed, suc-
ceeding each other in unilinear series.�

17



As to (1.), it should be noted that we do not construct or compute our
every-day ideas algorithmically, nor do we choose them out of a given pool in a
prede�ned manner, at least not as a conscious act. A real idea seems to crawl up
from our subconscious and�at least viewed from our conscious perspective�
seems to be carrying a clear element of chance. Jacques Hadamard, in his book
about the psychology of invention (Hadamard, 1945, pp. 29�30) puts it this way:

It cannot be avoided that this �rst operation take place, to a certain
extend, at random, so that the role of chance is hardly doubtful in
this �rst step of the mental process. But we see that that inter-
vention of chance occurs inside the unconscious: for most of these
combinations�more exactly, all those which are useless�remain un-
known to us.

As to (2.), every idea has to be true in some sense. Any idea not ful�lling this
condition would, when applied to our knowledge (which is of course considered to
be true, following the principle of veridicality32), produce nothing but nonsense.

Last but not least, an idea has to be applicable, as it is always an idea
relative to some situation or to some knowledge, in order not the be �useless,�
as Hadamard puts it in the quotation just given. If one is stuck in the middle of
a mathematical problem, an idea has to be directed towards the solution of that
very problem. It has to be applicable to a prepared set of propositions or�as
we will call it later on�of points of knowledge. Hadamard (1945, p. 32) even
connects applicability with beauty:

So there remains only Poincaré's �nal conclusion, viz., that to the
unconscious belongs not only the complicated task of constructing
the bulk of various combinations of ideas, but also the most delicate
and essential one of selecting those which satisfy our sense of beauty
and, consequently, are likely to be useful.

In what follows, we will represent both ideas and points of knowledge as
implicational formulas of propositional intuitionistic logic. In order to meet
the conditions of randomness and truth of an idea, we will repeatedly produce
random proofs, which are represented by terms of (typed) combinatory logic.
The actual principal type will then serve as a possible candidate for an idea. In
the next step, we test if this candidate (which can be considered as a pre-idea)
can actually be applied to the current point of knowledge. Here, application
is considered an application of modus ponens, following a minimal substitution
either in both pre-idea and point of knowledge, or, if one prefers, in the pre-idea
only.33

Let us consider an example: Suppose the current point of knowledge were
the simple proposition a � a. In a �rst case, the random term might be the
expression SII, where I again abbreviates the term SKK. As it turns out, this
term is not typable. Thus, it is not a proof of a proposition and would simply
be discarded, not even having reached the status of a pre-idea. In the next case,
the random proof might be the term SI, which proves the proposition ��b �

32In epistemic logic, the veridicality property Kaϕ� ϕ states that what an agent a knows
is always true, truth is included in the concept of knowledge.

33In this connection, the reader may want to skip back to the closing remark of Section 4.
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c� � b� � ��b � c� � c�. However, this pre-idea cannot be applied to the point
of knowledge a � a and is therefore discarded as well. Finally, we consider the
simple random proof S with principal type �a� �b� c�� � ��a� b�� �a� c��.
This pre-idea is indeed a proper idea as it can be applied to the current point
of knowledge a � a, yielding the new knowledge ��b � c� � b� � ��b � c� � c�,
which is then subjected to a new idea in the following iteration of the algorithm.

Figure 9 shows an example run of the just described algorithm. Again, only
the number of the iteration as well as the size (i.e. the number of implications)
of the current point of knowledge is printed. As a small modi�cation, we only
update the current point of knowlede if the new knowledge is more complex by
at least ten implications.

0: 2 213: 449 302: 4989

163: 24 251: 1038 306: 7484

173: 37 272: 1177 324: 11521

183: 57 275: 1766 327: 18053

189: 143 276: 1905 334: 28622

194: 229 284: 2858 344: 45723

197: 277 292: 3083 346: 73393

210: 416 297: 4625 362: 89541

Figure 9: The �rst 24 steps of an example run of the algorithm which produces
random ideas and applies them to the current point of knowledge. Printed are
the number of the current generation and the complexity of the knowledge, mea-
sured by the number of implications. In this case, the initial point of knowledge
is the proposition a� �b� a�.

Finally, in order to demonstrate the enormous speed at which an evolution
of knowlege now takes places, we compare the described algorithm with a ver-
sion in which the current point of knowledge is always completely ignored and
not incorporated in the production of new random knowledge. The modi�ed
algorithm now simply produces random proofs and checks whether the proved
proposition is greater in size than the current one. What is missing is an appli-
cation of the pre-ideas to the current knowledge. Figure 10 shows the resulting
behaviour.

0: 6 59: 22 3283: 36

4: 10 244: 24 28448: 56

8: 15 331: 25 100358: 59

Figure 10: The �rst 9 steps of an example run of the algorithm which pro-
duces random proofs and keeps the according knowledge until more complex
knowledge has been found. Note the enormous di�erence in speed compared to
the example given in Figure 9, where the current knowledge is incorporated in
the process.

Basically, we have been able to show that creativity can �ourish even in
complete isolation, i.e. without any contact to the outside world, just by tossing
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a coin. As Bergson (1911) puts it in the introduction to his Creative Evolution :

[T]he intellect has only to follow its natural movement, after the
lightest possible contact with experience, in order to go from discov-
ery to discovery, sure that experience is following behind it and will
justify it invariably.

We also have been able to demonstrate that the current knowledge grows by far
faster if the new ideas are applied to this knowledge. In the present context it
is most important, though, to note the close analogy between natural evolution
on the one hand side, represented here by Chaitin's metabiological algorithm,
and the evolution of knowledge on the other side, simulated by the application
of random ideas to a point of knowledge, which have both been represented by
logical propositions. This analogy can be regarded on two di�erent levels. First,
from an intuitive point of view, an obvious parallel between the two given algo-
rithms meets the eye: random mutations correspond to random ideas, organisms
to points of knowledge. Application and iteration each play a central role. Sec-
ondly, on a more technical level, combinatory logic, untyped and typed, serves as
a convincing tool in the actual implementation of both algorithms, representing
both software and proofs, linked through the Curry-Howard-correspondence.

As we have already mentioned, time has always been inseparably connected
to Darwinian evolution, and we may therefore conclude that it should also be
inseparably connected to human creativity and an evolution of knowledge. Berg-
son (1911, p. 11) states:

The universe endures. The more we study the nature of time, the
more we shall comprehend that duration means invention, the cre-
ation of forms, the continual elaboration of the absolutely new.

6 Conclusion

In his notebook MaxPhil V, Gödel writes (p. 350):

Bem. (Phil.): Es gibt zwei Methoden der Philosophie, die intuitive
und die kombinat[orische]. Die erste ist sehend, die zweite blind, die
erste anstrengend,34 die zweite leicht, die erste verständnisvoll, die
zweite mechanisch. Die erste hat zu tun mit dem Sinn der Sprache,
die zweite mit der Sprache selbst. Die erste führt zu einem lebendi-
gen Wissen, die zweite zu einem abstakten Wissen. (Das Richtige
[ist] eine Kombin[ation] beider. Ich habe bisher die zweite vernach-
lässigt.) Nur für die zweite (axiomat[ische]) braucht man Papier und
Bleistift. Die beiden Methoden entsprechen genau den beiden An-
schauungen über die Erkenntnis, dass sie ein Wahrnehmen bzw. ein
Konstruieren ist.

[Remark (philosophy): There are two methods of philosophy, the
intuitive and the combinatorial. The �rst is seeing, the second blind,
the �rst exhausting,35 the second easy, the �rst understanding, the

34Gödel's footnote: �erfordert Konzentration�
35Gödel's footnote: �requires concentration�
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second mechanical. The �rst has to do with the meaning of the
language, the second with the language itself. The �rst leads to a
living knowledge, the second to an abstract knowledge. (The right
approach is a combination of the two. I have neglected the second
so far). Only for the second (axiomatic) one needs paper and pencil.
The two methods correspond exactly to the two views of knowledge,
that it is a perceiving and a constructing respectively.]

Without doubt, we have followed the second approach in this essay, having
used �paper and pencil,� assited by a computer executing the �mechanical� pro-
posed simulations. And equipped with the considerations and the formal results
of the di�erent perspectives on the connection between logical inference and (an
illusion of) time, we can now �nally return to the question in which way the
assumption of the non-existence of time may in�uence our worldview. For this
purpose, we have to include the human mind into our worldview and analyse
how the brain and our thoughts re�ect the physical world surrounding us: If a
physical time does not exist, still, nature has obviously equipped man with an
inner sense of time, a sense which helps to structure the outer physical world
and its events, as well as our collections of knowledge. The�without doubt�
di�use picture which emerges from the di�erent considerations presented in this
paper may now be taken as a gentle hint at an inconsistency within this very
perception of (a non-existing) time, an inconsistency which may be interpreted
as an immediate consequence of the non-existence itself.

It should be worthwhile to mention that the overall situation may be easily
compared to a worldview in which the in�nite set, especially the universal set,
does not have any `real' existence. Still, man is apparently equipped with the
ability to `perceive' in�nite sets, possibly even the universal set. Again, this
ability helps us to structure both the world surrounding us as well as our mental
processes. And yet, the (formal) inconsistencies within naive set theory, for
instance surfacing with Russell's paradox, clearly hint at the assumed non-
existence.
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